PigSPARQL: A SPARQL Query Processing Baseline for Big Data
نویسندگان
چکیده
In this paper we discuss PigSPARQL, a competitive yet easy to use SPARQL query processing system on MapReduce that allows adhoc SPARQL query processing on large RDF graphs out of the box. Instead of a direct mapping, PigSPARQL uses the query language of Pig, a data analysis platform on top of Hadoop MapReduce, as an intermediate layer between SPARQL and MapReduce. This additional level of abstraction makes our approach independent of the actual Hadoop version and thus ensures the compatibility to future changes of the Hadoop framework as they will be covered by the underlying Pig layer. We revisit PigSPARQL and demonstrate the performance improvement when simply switching the underlying version of Pig from 0.5.0 to 0.11.0 without any changes to PigSPARQL itself. Because of this sustainability, PigSPARQL is an attractive long-term baseline for comparing various MapReduce based SPARQL implementations which is also underpinned by its competitiveness with existing systems, e.g. HadoopRDF.
منابع مشابه
SPARQL query processing with Apache Spark
The number and the size of linked open data graphs keep growing at a fast pace and confronts semantic RDF services with problems characterized as Big data. Distributed query processing is one of them and needs to be efficiently addressed with execution guaranteeing scalability, high availability and fault tolerance. RDF data management systems requiring these properties are rarely built from sc...
متن کاملS2RDF: RDF Querying with SPARQL on Spark
RDF has become very popular for semantic data publishing due to its flexible and universal graph-like data model. Thus, the ever-increasing size of RDF data collections raises the need for scalable distributed approaches. We endorse the usage of existing infrastructures for Big Data processing like Hadoop for this purpose. Yet, SPARQL query performance is a major challenge as Hadoop is not inte...
متن کاملPigSPARQL: Übersetzung von SPARQL nach Pig Latin
Dieser Beitrag untersucht die effiziente Auswertung von SPARQLAnfragen auf großen RDF-Datensätzen. Zum Einsatz kommt hierfür das Apache Hadoop Framework, eine bekannte Open-Source Implementierung von Google's MapReduce, das massiv parallelisierte Berechnungen auf einem verteilten System ermöglicht. Zur Auswertung von SPARQL-Anfragen mit Hadoop wird in diesem Beitrag PigSPARQL, eine Übersetzung ...
متن کاملSPARQling Pig - Processing Linked Data with Pig Latin
In recent years, dataflow languages such as Pig Latin have emerged as flexible and powerful tools for handling complex analysis tasks on big data. These languages support schema flexibility as well as common programming patterns such as iteration. They offer extensibility through user-defined functions while running on top of scalable distributed platforms. In doing so, these languages enable a...
متن کاملDistributed Join Approaches for W3C-Conform SPARQL Endpoints
Currently many SPARQL endpoints are freely available and accessible without any costs to users: Everyone can submit SPARQL queries to SPARQL endpoints via a standardized protocol, where the queries are processed on the datasets of the SPARQL endpoints and the query results are sent back to the user in a standardized format. As these distributed execution environments for semantic big data (as i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013